

UNIVERSITE ABDELMALEK ESSAADI

Ecole Nationale de Commerce et de Gestion
National School of Management

Tél.: 039-31-34-87/88/89, Fax: 039-31-34-93, Adresse: B.P 1255 Tanger- Maroc

EXAMEN DE FIN DE SEMESTRE

SEMESTRE D'AUTOMNE

Session Normale - Décemebre 2019

Épreuve

: Statistique appliquée

Enseignant

: Rachid MCHICH : 3^{ème} année – Semestre 5

Niveau Jour/Date

: 3eme année – Semestre 5 : Mardi 24/12/2019 à 12h00

Durée

: 2h00

Les documents et téléphones portables sont interdits. Les exercices sont indépendants les uns des autres et ne sont pas classés par ordre de difficulté.

N.B.: Tous les calculs doivent être justifiés.

Exercice 1: (4 pts)

- 1. Définir un échantillon aléatoire simple dans le cas d'une population finie, puis dans le cas d'une population infinie.
- 2. Dans les problèmes de régression linéaire, quelle est la différence entre le Test de Student et ce lui de Fisher?
- 3. Sachant que Z est une variable aléatoire normale centrée réduite, calculer les probabilités suivantes :
 - a. $P(z \ge 0.93)$
 - b. $P(-1, 32 \le z \le -1, 72)$
 - / c.
 - c. $P(z \le -1, 05)$
 - d. $P(-1, 52 \le z \le 0, 22)$

Exercice 2: (4 pts)

Considérons le test d'hypothèses suivant :

 $H_0: \mu \leq 25$

 $H_a: \mu > 25$

Un échantillon de taille n=40 fournit une moyenne d'échantillon de 26,4. L'écart type de la population est égal à 6.

- a. De quel type de test s'agit-il? Quelles sont les erreurs de premier type et de second type dans ce cas?
- b. Calculer la valeur de la statistique de test. Au seuil $\alpha = 0,01$, que peut-on conclure pour l'hypothèse (H_0) ?
- c. Supposons que l'écart type de la population soit inconnu, et que celui de l'échantillon soit égal à 23,8, que peut-on conclure dans ce cas?

Exercice 3: (4 pts)

Une enquête menée auprès d'un échantillon de 2000 personnes en voyage d'affaires a affirmé que 540 d'entre eux ont déclaré que le « respect des horaires » était pour eux le facteur le plus important pour le choix de la compagnie.

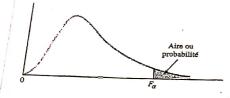
- a. Quelle est l'estimation ponctuelle de la proportion de la population de personnes en voyage d'affaires qui considèrent le « respect des horaires » comme le facteur le plus important pour choisir la compagnie idéale pour leur vol ?
- b. Construire un intervalle de confiance à 90% pour estimer la proportion de cette population.
- c. De quelle taille l'échantillon devrait-il être pour obtenir une marge d'erreur de 0,01 à un seuil de confiance de 90%?
- d. Quelle conclusion peut-on en tirer par rapport à la taille de l'échantillon et la précision attendue de cette étude ?

Exercice 4: (8 pts) Estimation des coûts.

En collectant des données sur les quantités (x_i) et sur les coûts (y_i) , un comptable veut estimer le coût associé à une opération de fabrication particulière. Considérons ainsi l'échantillon suivant des quantités produites et des coûts de production :

Volume de production (en unités)	Coût total (en dh)
400	4 000
450	5 000
550	5 400
600	5 900
700	6 400
750	7 000

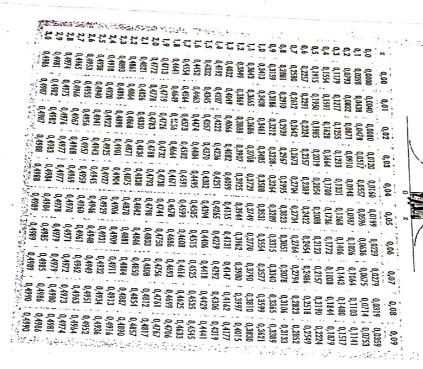
- 1. Donner l'équation estimée de régression linéaire qui permet de prévoir le coût total de la production d'une quantité donnée.
- 2. Quel est le coût variable par unité produite?
- 3. En explicitant le calcul de : SCT, SCreg et SCres, calculer le coefficient de détermination et le coefficient de corrélation de l'échantillon. Quelles interprétations peut-on en tirer?
- 4. La société prévoit de produire 500 unités le mois prochain. Quel est le coût estimé de cette opération ?
- 5. En calculant la MCres et la MCreg, calculer l'erreur type de l'estimation, l'écart type estimé de b_1 , puis donner un intervalle de confiance de β_1 à 99%.
- 6. Utiliser le test de Student et de Fisher (à 95%) pour tester les hypothèses suivantes :

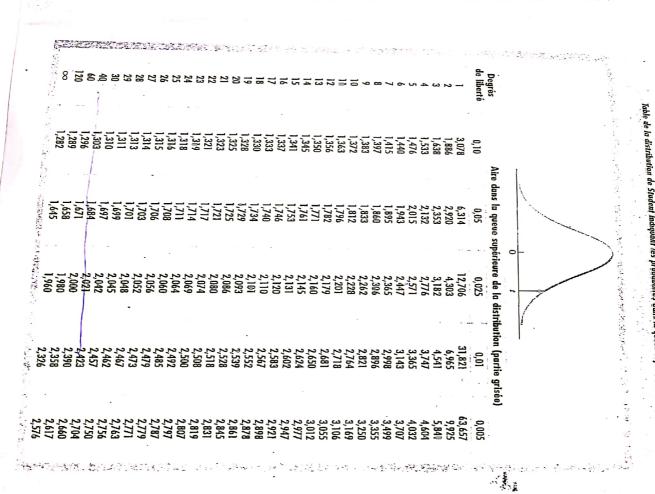

 $H_0: \quad \beta_1 = 0$

 $H_a: \beta_1 \neq 0$

7. Présenter les résultats sous forme d'un tableau ANOVA.

N.B.: Tous les calculs doivent être justifiés


able 4 Distribution F de Fisher



Les chiffres de la table correspondent aux valeurs F_{α} , α étant l'aire ou la probabilité située dans la queue supérieure de la distribution de Fisher. Par exemple, avec 4 degrés de liberté au numérateur, 8 degrés de liberté au dénominateur et une aire de 0,05 dans la queue supérieure de la distribution, $F_{0,05}=3,84$.

Table des valeurs $F_{0,05}$																			
Degre libert	é au	Degrés de liberté au numérateur																	
dénominateur 1		2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	00
1	161,4	,-	215,7	224,6	230,2	234,0	236,8	238,9	240,5	241,9	243,9	245,9	248,0	249.1	250,1	251,1	252,2	253,3	254.3
2	18,51	, , , ,	19,16		19,30	19,33	19,35	19,37	19,38	19,40		19,43	19,45	19,45	19.46	19,47	19.48	19,49	
3	10,13	- ,	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,74		8,66		8,62	8,59	8,57	8,55	
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,91	5,86			5,75	5,72		,	- ,-
5	6,61	5,79	5,41	5.19	5,05	4,95	4,88	4,82	4,77	4,74	-		,					,	
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,77		4,68				4,50	,	,	. ,	,
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	4,06	4,00	,			,	•			
8	5,32	4,46	4,07	3,84	3,69	3,58	-,			3,64	3,57	,	3,44		3,38		,		
9	5,12	4,26	3,86	3,63	3,48	3,37	3,50	3,44	3,39	3,35	3,28	,						,	
10	4,96	4,10					3,29	3,23	3,18	3,14	3,07	3,01	2,94	2,90	2,86	5 2,8	3 2,7	9 2,	75 2
11	4,84		3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,91	2,85	2,77	2,74	2,7	0 2,6	66 2,	52 Ż	,58
12		3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,79	2,72	2,6	2,61	2,5	7 2,5	53 2,	49 2	.45
_	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,69	2,62	2 2,5	1 2,5	1 2,4	7 2,			.34
3	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71.	2,67	2,60	2,53	3 2,4	5 2,4	2 2,3				2.25
4	4,60	3,74	3.34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,53								2.18

						251			Tabl	e des va	deurs F	0,01									
libe	grés de exté au —	Degrés de liberté au numérateur																			
dénominateur 1		1	2		3	4 5	6	7	8	9	10	12	15	20	24	30	40	60	120		
2 3 4 5 6		,50 12 20 26	4999 99,0 30,8 18,00 13,27	99, 2 29, 0 16,6 7 12,0	17 99, 46 28, 59 15,9 6 11,3	25 99,3 71 28,2 98 15,52 9 10,97	0 99,33 4 27,91 2 15,21 ' 10,67	99,36 27,67 14,98 10,46	5982 99,37 27,49 14,80 10,29	6022 99,39 27,35 14,66 10,16	6056 99,40 27,23 14,55 10,05	6106 99,42 27,05 14,37 9,89	6157 99,43 26,87 14,20 9,72	6209 99,45 26,69 14,02 9,55	6235 99,46 26,60 13,93 9,47	6261 99,47 26,50 13,84 9,38	6287 99,47 26,41 13,75 9,29	6313 99,48 26,32 13,65 9,20	6339	6366 99,50 26,13	
7 8 9	12,25 11,26 10,56	5	9,55 8,65 8,02	8,45 7,59 6,99	7,85 7,01 6,42	7,46 6,63 6,06		8,26 6,99 6,18 5,61	8,10 6,84 6,03 5,47	7,98 6,72 5,91 5, 35	7,87 6,62 5,81 5,26	7,72 6,47 5,67 5,11	7,56 6,31 5,52 4,96	7,40 6,16 5,36 4,81	7,31 6,07 5,28 4,73	7,23 5,99 5,20 4,65	7,14 5,91 5,12 4,57	7,06 5,82 5,03 4,48	6,97 5,74 4,95	4,8	
10 11 12 13 4	10,04 9,65 9,33 9,07 8,86 8,68	7 6, 6,		6,55 6,22 5,95 5,74 5,56	5,99 5,67 5,41 5,21 5,04	5,32 5,06 4,86 4,69	5,39 5,07 4,82 4,62 4,46	5,20 4,89 4,64 4,44 4,28	5,06 4,74 4,50 4,30 4,14	4,94 4,63 4,39 4,19 4,03	4,85 4,54 4,30 4,10 3,94	4,71 4,40 4,16 3,96 3,80	4,56 4,25 4,01 3,82 3,66	4,41 4,10 3,86 3,66 3,51	4,33 4,02 3,78 3,59 3,43	4,25 3,94 3,70 3,51 3,35	4,17 3,86 3,62 3,43	4,08 3,78 3,54 3,34	4,00 3,69 3,4 3,2	3,9 9 3,9 5 3,	
	8,53 8,40 8,29 8,18	6,2 6,1 6,0 5,93	23 5 1 5 1 5	5,42 5,29 5,18 5,09 ,01	4,89 4,77 4,67 4,58 4,50	4,56 4,44 4,34 4,25 4,17	4,10 4,01		4,00 3,89 3,79 3,71 3,63	3,89 3,78 3,68 3,60 3,52	3,80 3,69 3,59 3,51 3,43	3,67 3,55 3,46 3,37 3,30	3,52 3,41 3,31 3,23 3,15	3,37 3,26 3,16 3,08 3,00	3,29 3,18 3,08 3,00 2,92	3,10 3,00 2,92	3,02 2,92 2,84	2 2,99 2 2,89 4 2,7	3 2,8 3 2,7 5 2,6	34 2 75 2 56 2	

